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STATISTICS

Significant
Problem

Standard scientific methods are
under fire. Will anything change?

By Lydia Denworth

IIl 19 25 British geneticist and statistician Ronald
Fisher published a book called Statistical Methods for Research
Workers. The title doesn’t scream “best seller,” but the book was
a huge success and established Fisher as the father of modern
statistics. In it, he tackles the problem of how researchers can
apply statistical tests to numerical data to draw conclusions
about what they have found and determine whether it is worth
pursuing. He references a statistical test that summarizes the
compatibility of data with a proposed model and produces a p
value. Fisher suggests that researchers might consider a p val-
ue of 0.05 as a handy guide: “It is convenient to take this point
as a limit in judging whether a deviation ought to be consid-
ered significant or not.” Pursue results with p values below
that threshold, he advises, and do not spend time on results
that fall above it. Thus was born the idea that a value of p less
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IN BRIEF

The use of p values for
nearly a century to
determine statistical
significance of experi-
mental results has con-
tributed to an illusion
of certainty and repro-
ducibility crises in many
scientific fields.

There is growing
determination to reform
statistical analysis, but
researchers disagree
on whether it should be
tweaked or overhauled.
Some suggest changing
statistical methods,
whereas others would
do away with a thresh-
old for defining “signi-
ficant” results.
Ultimately the p value
plays into the human
need for certainty.

So it may be time for
both scientists and

the public to embrace
the discomfort of

being unsure.
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than 0.05 equates to what is known as statistical significance—
a mathematical definition of “significant” results.

Nearly a century later, in many fields of scientific inquiry, a
p value less than 0.05 is considered the gold standard for deter-
mining the merit of an experiment. It opens the doors to the
essentials of academia—funding and publication—and therefore
underpins most published scientific conclusions. Yet even Fisher
understood that the concept of statistical significance and the p
value that underpins it has considerable limitations. Most have
been recognized for decades. “The excessive reliance on signifi-
cance testing,” wrote psychologist Paul Meehl in 1978, “[is] a poor
way of doing science.” P values are regularly misinterpreted, and
statistical significance is not the same thing as practical signifi-
cance. Moreover, the methodological decisions required in any
study make it possible for an experimenter, consciously or uncon-
sciously, to shift a p value up or down. “As is often said, you can
prove anything with statistics,” says statistician and epidemiolo-
gist Sander Greenland, professor emeritus at the University of
California, Los Angeles, and one of the leading voices for reform.
Studies that rely only on achieving statistical significance or
pointing out its absence regularly result in inaccurate claims—
they show things to be true that are false and things to be false
that are true. After Fisher had retired to Australia, he was asked
whether there was anything in his long career he regretted. He is
said to have snapped, “Ever mentioning 0.05.”

In the past decade the debate over statistical significance has
flared up with unusual intensity. One publication called the flimsy
foundation of statistical analysis “science’s dirtiest secret.” Anoth-
er cited “numerous deep flaws” in significance testing. Experimen-
tal economics, biomedical research and especially psychology
have been engulfed in a controversial replication crisis, in which it
has been revealed that a substantial percentage of published find-
ings are not reproducible. One of the more notorious examples is
the idea of the power pose, the claim that assertive body language
changes not just your attitude but your hormones, which was
based on one paper that has since been repudiated by one of its
authors. A paper on the economics of climate change (by a skeptic)
“ended up having almost as many error corrections as data points—
no kidding!—but none of these error corrections were enough for
him to change his conclusion,” wrote statistician Andrew Gelman
of Columbia University on his blog, where he regularly takes
researchers to task for shoddy work and an unwillingness to admit
the problems in their studies. “Hey, it’s fine to do purely theoreti-
cal work, but then no need to distract us with data,” Gelman wrote.

The concept of statistical significance, though not the only fac-
tor, has emerged as an obvious part of the problem. In the past
three years hundreds of researchers have urgently called for
reform, authoring or endorsing papers in prestigious journals on
redefining statistical significance or abandoning it altogether. The
American Statistical Association (ASA), which put out a strong
and unusual statement on the issue in 2016, argucs for “moving to
aworld beyond p < 0.05.” Ronald Wasserstein, the ASA’s executive
director, puts it this way: “Statistical significance is supposed to
be like a right swipe on Tinder. It indicates just a certain level of
interest. But unfortunately, that’s not what statistical significance
has become. People say, T've got 0.05, 'm good. The science stops.”

The question is whether anything will change. “Nothing is new.
That needs to sober us about the prospect that maybe this time
will be the same as every other time,” says behavioral economist
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Statistical Significance

Imagine you grow pumpkins in your garden. Would using fertiliz-
er affect their size? Given your long experience without fertilizer,
you know how much the weights of pumpkins vary and you know
that their average weight is 10 pounds. You decide to grow
a sample of 25 pumpkins with fertilizer. The average weight
of these 25 pumpkins turns out to be 13.2 pounds. How do you
decide whether the difference of 3.2 pounds from the status quo
of 10 pounds—the hypothetical “null” value—happened by
chance or that fertilizer does indeed grow larger pumpkins?
Statistician Ronald Fisher’s solution to this puzzle involves
performing a thought experiment: imagine that you were to
repeatedly grow 25 pumpkins a very large number of times.
Each time you would get a different average weight because
of the random variability of individual pumpkins. Then you would
plot the distribution of those averages and consider the proba-
bility (FZEINE) that the data you have generated would be possi-
ble if the fertilizer had no effect. By convention, a p value of 0.05
became a cut-off to identify significant results—in this case, ones
that lead a researcher to conclude the fertilizer does not have
an effect. Here we break down some of the concepts that drive
the thought experiment for statistical significance.

The effect size for a treatment is the difference between the average out-
come when the treatment is used compared with the average when the
treatment is not used. The concept can be used to compare averages in
samples or “true” averages for entire distributions. The effect size can be
measured in the same units (such as pounds of pumpkins) as the outcome.
But for many outcomes—such as responses to some psychological ques-
tionnaires—there is not a natural unit. In that case, researchers can use
relative effect sizes. One way of measuring relative effect size is based on
the overlap between the control and the treatment distributions.

Effect size = difference in means
}"+—— Mean of data set 2

Mean of data set 1

Data set 1 (control) : Data set 2 (treatment)
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Larger area of overlap indicates a smaller relative effect size

Effect size

Smaller area of overlap indicates a larger relative effect size
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To calculate the p value, we need to compare the actual average of 13.2 pounds that we observed in our
sample of 25 pumpkins with the random distribution of averages if we were to take many new samples
of 25 pumpkins.

The bell curve shows the distribution of random average weights for samples of 25 under the null
hypothesis that the fertilizer has no effect.

Null hypothesis mean
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The p value is the probability of getting a random average weight as far from 10 as the average
you actually observed, 13.2. Since 13.2 - 10 = 3.2, we want the probability of getting an average
>13.20r < 6.8 (6.8 =10 - 3.2). In this example, that probability is 0.074, which is the actual
observed p value for your sample. Because it is greater than 0.05, your result would not be
considered significant evidence that the fertilizer makes a difference.

The example shows a “two-tailed test,” where the p value counts the probability of a weight greater
than 13.2 and that of a weight less than 6.8 (10 - 3.2 = 6.8). Under some circumstances, a researcher
might choose to perform a “one-tailed test.” In that case, the p value would be only 0.037, which,
being less than 0.05, is considered significant. This illustrates one way in which researchers can
modify their stated intention for a study to achieve different p values with exactly the same data.

BAYESIAN METHODS

In the Bayesian approach to inference, a person’s state of uncertainty
about an unknown quantity is represented by a probability distribution.
Bayes’ theorem is used to combine individuals’ initial beliefs—their
distribution before looking at data—with the information they receive
from the data, which produces a mathematically implied distribution for
their updated beliefs. The updated beliefs from one study become the new
initial beliefs for the next study, and so on. A major area of discussion and
controversy concerns attempts to find “objective” criteria for initial beliefs.
The goal is to find ways of constructing initial beliefs, known as prior
distributions, that can be widely accepted by researchers as reasonable.

SURPRISAL

The p value conveys how surprising our pumpkin data are if we suppose
that, in reality, fertilizing has no effect on growth. Some researchers have
suggested that the p values do not convey surprisingness in a way that

is intuitive for most people. Instead they suggest a mathematical quantity
called a surprisal, also known as an s value or Shannon transform, that
adjusts p values to produce bits (as in computer bits). Surprisal can be
interpreted through the example of tossing coins.
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CONFIDENCE INTERVAL

We can calculate a 95 percent confidence interval from
our sample of 25 pumpkins. This is a guess for the average
weight of fertilized pumpkins. Calculating the 95 percent
confidence interval involves inverting the calculation for
the p value to find all hypothetical values that produce a

p value > 0.05. With our sample of 25 pumpkins, our

95 percent confidence interval goes from 9.69 to 16.71.
The “true” average weight of fertilized pumpkins may or
may not be in that interval. We can’t be sure, so what does
the “95 percent” mean? Imagine what would happen if
we repeatedly grew batches of 25 pumpkins and sampled
them. Each sample would produce a randomly different
confidence interval. We know that in the long run, 95 per-
cent of these intervals would include the true value and

5 percent would not. But what about our particular
interval from the first pumpkin sample? We don’t know
whether itis in the 95 percent that worked or in the 5 per-
cent that missed. It is the process that is right 95 percent

of the time.
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Two heads in a row = 2 bits of surprisal = p value of 1/2* = 0.25

Higher Updated beliefs

Initial beliefs
Degree
of belief / \
Lower

<— True but unknown average weight in an infinite sample —
(i.e., the universe) of fertilized pumpkins

New evidence
from data
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Four heads in a row = 4 bits of surprisal = p value of 1/2 = 0.0625
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Five heads in a row = 5 bits of surprisal = p value of 1/2° = 0.03215
Our sample of 25 pumpkins with an average weight of 13.2 and a p value

of 0.074 produces between 3 and 4 bits of surprisal. To be exact: 3.76 bits
of surprisal since 3.76 = -log, (0.074) .
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Daniel Benjamin of the University of Southern California, another
voice for reform. Still, although they disagree over the remedies, it
is striking how many rescarchers do agree, as cconomist Stephen
Ziliak wrote, that “the current culture of statistical significance
testing, interpretation, and reporting has to go.”

THE WORLD ASIT IS
THE GOAL OF SCIENCE is to describe what is true in nature. Scientists
use statistical models to infer that truth—to determine, for
instance, whether one treatment is more effective than another or
whether one group differs from another. Every statistical model
relies on a set of assumptions about how data are collected and
analyzed and how the researchers choose to present their results.

Those results nearly always center on a statistical approach
called null hypothesis significance testing, which produces a
p value. This testing does not address the truth head-on; it glanc-
es at it obliquely. That is because significance testing is intended
to indicate only whether a line of research is worth pursuing fur-
ther. “What we want to know when we run an experiment is how
likely is it [our] hypothesis is true,” Benjamin says. “But [signifi-
cance testing] answers a convoluted alternative question, which
is, if my hypothesis were false, how unlikely would my data be?”

Sometimes this works. The search for the Higgs boson, a par-
ticle first theorized by physicists in the 1960s, is an extreme but
useful example. The null hypothesis was that the Higgs boson did
not exist; the alternative hypothesis was that it must exist. Teams
of physicists at CERN’s Large Hadron Collider ran multiple exper-
iments and got the equivalent of a p value so vanishingly small
that it meant the possibility of their results occurring if the Higgs
boson did not exist was one in 3.5 million. That made the null
hypothesis untenable. Then they double-checked to be sure the
result wasn’t caused by an error. “The only way you could be
assured of the scientific importance of this result, and the Nobel
Prize, was to have reported that [they] went through hoops of fire
to make sure [none] of the potential problems could have pro-
duced such a tiny value,” Greenland says. “Such a tiny value is say-
ing that the Standard Model without the Higgs boson [can’t be
correct]. It’s screaming at that level.”

But physics allows for a level of precision that isn’t achievable
elsewhere. When you're testing people, as in psychology, you will
never achieve odds of one in three million. A p value of 0.05 puts
the odds of repeated rejection of a correct hypothesis across many
tests at one in 20. (It does not indicate, as is often believed, that
the chance of error on any single test is 5 percent.) That’s why stat-
isticians long ago added “confidence intervals,” as a way of pro-
viding a sense of the amount of error or uncertainty in estimates
made by scientists. Confidence intervals are mathematically relat-
ed to p values. P values run from 0 to 1. If you subtract 0.05 from 1,
you get 0.95, or 95 percent, the conventional confidence interval.
But a confidence interval is simply a useful way of summarizing
the results of hypothesis tests for many effect sizes. “There’s noth-
ing about them that should inspire any confidence,” Greenland
says. Yet over time both p values and confidence intervals took
hold, offering the illusion of certainty.

Pvalues themselves are not necessarily the problem. They are a
useful tool when considered in context. That’s what journal editors
and scientific funders and regulators claim they do. The concern is
that the importance of statistical significance might be exaggerat-
ed or overemphasized, something that’s especially easy to do with
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small samples. That’s what led to the current replication crisis.
In 2015 Brian Nosek, co-founder of the Center for Open Science,
spearheaded an effort to replicate 100 prominent social psycholo-
gy papers, which found that only 36.1 percent could be replicated
unambiguously. In 2018 the Social Sciences Replication Project
reported on direct replications of 21 experimental studies in the
social sciences published in Nature and Science between 2010 and
2015. They found a significant effect in the same direction as in the
original study for 13 (62 percent) of the studies, and the effect size
of the replications was on average about half the original effect size.

Genetics also had a replication crisis in the early to mid-2000s.
After much debate, the threshold for statistical significance in
that field was shifted dramatically. “When you find a new discov-
ery of a genetic variance related to some disease or other pheno-
type, the standard for statistical significance is 5 X 1078, which is
basically 0.05 divided by a million,” says Benjamin, who has also
worked in genetics. “The current generation of human genetics
studies is considered very solid.”

The same cannot be said for biomedical research, where the risk
tends toward false negatives, with researchers reporting no statis-
tical significance when effects exist. The absence of evidence is not
evidence of absence, just as the absence of a wedding ring on some-
one’s hand is not proof that the person isn't married, only proof
that the person isn’t wearing a ring. Such cases sometimes end up
in court when corporate liability and consumer safety are at stake.

BLURRING BRIGHT LINES
JUST HOW MUCH TROUBLE is science in? There is fairly wide agree-
ment among scientists in many disciplines that misinterpretation
and overemphasis of p values and statistical significance are real
problems, although some are milder in their diagnosis of its sever-
ity than others. “I take the long view,” says social psychologist
Blair T. Johnson of the University of Connecticut. “Science does
this regularly. The pendulum will swing between extremes, and
you've got to live with that.” The benefit of this round, he says, is



that it is a reminder to be modest about inferences. “If we don’t
have humility as scholars, were not going to move forward.”

To truly move forward, though, scientists must agree on solu-
tions. That is nearly as hard as the practice of statistics itself. “The
fear is that taking away this long-established practice of being
able to declare things as statistically significant or not would
introduce some Kkind of anarchy to the process,” Wasserstein says.
Still, suggestions abound. They include changes in statistical
methods, in the language used to describe those methods and in
the way statistical analyses are used. The most prominent ideas
have been put forth in a series of papers that began with the ASA
statement in 2016, in which more than two dozen statisticians
agreed on several principles for reform. That was followed by a
special issue of one of the association’s journals that included 45
papers on ways to move beyond statistical significance.

In 2018 a group of 72 scientists published a commentary called
“Redefine Statistical Significance” in Nature Human Behaviour
endorsing a shift in the threshold of statistical significance from
0.05 to 0.005 for claims of new discoveries. (Results between 0.05
and 0.005 would be called “suggestive.”) Benjamin, the lead author
of that paper, sees this as an imperfect short-term solution but as
one that could be implemented immediately. “My worry is that if
we don’t do something right away, we’ll lose the momentum to do
the kind of bigger changes that will really improve things, and
we’ll end up spending all this time arguing over the ideal solution.
In the meantime, there will be a lot more damage that gets done.”
In other words, don’t let the perfect be the enemy of the good.

Others say redefining statistical significance does no good at
all because the real problem is the very existence of a threshold. In
March, U.C.L.A’s Greenland, Valentin Amrhein, a zoologist at the
University of Basel, and Blakeley McShane, a statistician and ex-
pert in marketing at Northwestern University, published a com-
ment in Nature that argued for abandoning the concept of statis-
tical significance. They suggest that p values be used as a contin-
uous variable among other pieces of evidence and that confidence
intervals be renamed “compatibility intervals” to reflect what
they actually signal: compatibility with the data, not confidence
in the result. They solicited endorsements for their ideas on Twit-
ter. Eight hundred scientists, including Benjamin, signed on.

Clearly, better—or at least more straightforward—statistical
methods are available. Gelman, who frequently criticizes the sta-
tistical approaches of others, does not use null hypothesis signifi-
cance testing in his work at all. He prefers Bayesian methodology,
a more direct statistical approach in which one takes initial
beliefs, adds in new evidence and updates the beliefs. Greenland
is promoting the use of a surprisal, a mathematical quantity that
adjusts p values to produce bits (as in computer bits) of informa-
tion. A p value of 0.05 is only 4.3 bits of information against the
null. “That’s the equivalent to seeing four heads in a row if some-
one tosses a coin,” Greenland says. “Is that much evidence against
the idea that the coin tossing was fair? No. You'll sce it occur all
the time. That’s why 0.05 is such a weak standard.” If researchers
had to put a surprisal next to every p value, he argues, they would
be held to a higher standard. An emphasis on effect sizes, which
speak to the magnitude of differences found, would also help.

Improved education about statistics for both scientists and the
public could start with making the language of statistics more ac-
cessible. Back when Fisher embraced the concept of “significance,”
the word carried less weight. “It meant ‘signifying’ but not ‘impor-
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tant,”” Greenland says. And it’s not surprising that the term “con-
fidence intervals” tends to instill undue, well, confidence.

EMBRACE UNCERTAINTY

STATISTICAL SIGNIFICANCE has fed the human need for certainty.
“The original sin is people wanting certainty when it’s not appro-
priate,” Gelman says. The time may have come for us to sit with
the discomfort of not being sure. If we can do that, the scientific
literature will look different. A report about an important finding
“should be a paragraph, not a sentence,” Wasserstein says. And it
shouldn’t be based on a single study. Ultimately a successful theo-
ry is one that stands up repeatedly to decades of scrutiny.

Small changes are occurring among the powers that be in sci-
ence. “We agree that p values are sometimes overused or misin-
terpreted,” says Jennifer Zeis, spokesperson for the New England
Journal of Medicine. “Concluding that a treatment is effective for
an outcome if p < 0.05 and ineffective if p > 0.05 is a reductionist
view of medicine and does not always reflect reality.” She says
their research reports now include fewer p values, and more
results are reported with confidence intervals without p values.
The journal is also embracing the principles of open science, such
as publishing more detailed research protocols and requiring
authors to follow prespecified analysis plans and to report when
they deviate from them.

At the U.S. Food and Drug Administration, there hasn’t been
any change to requirements in clinical trials, according to John
Scott, director of the Division of Biostatistics. “I think it’s very
unlikely that p values will disappear from drug development any-
time soon, but I do foresee increasing application of alternative
approaches,” he says. For instance, there has been greater interest
among applicants in using Bayesian inference. “The current
debate reflects generally increased awareness of some of the limi-
tations of statistical inference as traditionally practiced.”

Johnson, who is the incoming editor at Psychological Bulletin,
has seen eye to eye with the current editor but says, “I intend to
force conformity to fairly stringent standards of reporting. This
way I'm sure that everyone knows what happened and why, and
they can more easily judge whether methods are valid or have
flaws.” He also emphasizes the importance of well-executed meta-
analyses and systematic reviews as ways of reducing dependence
on the results of single studies.

Most critically, a p value “shouldn’t be a gatekeeper,” McShane
says. “Let’s take a more holistic and nuanced and evaluative view.”
That was something that even Ronald Fisher’s contemporaries
supported. In 1928 two other giants of statistics, Jerzy Neyman
and Egon Pearson, wrote of statistical analysis: “The tests them-
selves give no final verdict but as tools help the worker who is
using them to form his final decision.”

MORE TO EXPLORE

Evaluating the Replicability of Social Science Experiments in Nature and Science
between 2010 and 2015. Colin F. Camerer et al. in Nature Human Behaviour, Vol. 2,
pages 637-644; September 2018.

Moving to a World beyond “p< 0.05.” Ronald L. Wasserstein, Allen L. Schirm and
Nicole A. Lazar in American Statistician, Vol. 73, Supplement 1, pages 1-19; 2019.
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Make Research Reproducible. Shannon Palus; October 2018.
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